業外收入比例:用3個財報數據,選出年化報酬率 22% 以上的投資組合!
介紹三種財物數據,並且建構一個有效的選股因子,展示了如何利用一些簡單的財務指標來進行投資選擇,並且用歷史數據來驗證這些選擇的效果。不管是有經驗的投資者,還是剛開始學習的人,都可以通過這些實驗來增進對市場的理解。最重要的是,保持輕鬆的心態,享受這個過程,這樣才能在學習和投資中找到樂趣!
介紹三種財物數據,並且建構一個有效的選股因子,展示了如何利用一些簡單的財務指標來進行投資選擇,並且用歷史數據來驗證這些選擇的效果。不管是有經驗的投資者,還是剛開始學習的人,都可以通過這些實驗來增進對市場的理解。最重要的是,保持輕鬆的心態,享受這個過程,這樣才能在學習和投資中找到樂趣!
量化交易的核心在於數據分析和模型建構,而特徵工程是連接原始數據與模型性能的關鍵環節。隨著數據規模和複雜度的增加,手動特徵工程變得越來越困難且耗時。OpenFE(Open Feature Engineering)作為一個高效的自動化特徵生成工具,為量化交易中的特徵工程提供了全新的解決方案。本文將詳細介紹 OpenFE 的原理,並探討其在量化交易中的應用。
券商分點理論上是非常有效果的數據,應用得當,可以用來預測股價的走勢,然而,市場上主要將券商分點資料來計算「主力買賣超」、「買賣家數差」,該指標在選股的有效程度上,並非顯著。 本文將提出一種新的方式,來提取券商分點資料,製作更有效的選股指標,其效果非常顯著,搭配回測策略能夠有效獲得卓越的效果。
這是個非常忙碌的 7 月,FinLab package 迎來非常重大的更新,最重要的莫過於新的 portfolio 模組,可以非常方便的組...
近期台積電突破千元,台股站上23000點,法人警示指標已達短線超買階段,短線過熱新聞滿天飛,究竟該不蓋把手中持股賣出呢? 本文將帶領讀者觀...
低波動因子是一種量化指標,用來衡量股票或資產在給定期間內的價格波動程度。這些因子通常用於選擇那些價格波動相對較小的股票,並構建低風險的投資組合。常見的低波動因子包括標準差、平均真實波幅(ATR)、最大回撤等。
在投資的世界裡,尋找有效的選股策略一直是投資者追求的目標。最近,我們意外發現一個簡單而有效的修改,就能讓現有因子進行選股時產生很不錯的結果。這篇文章將深入探討這個策略的背後邏輯,並展示如何通過簡單的代碼來實現。
截止至2024-05-31,加權指數收21,174點,下跌190點(-0.89%)。在股市征戰的各位肯定也覺得最近股市漲幅頗大,年初至今已...
在投資市場中,槓桿是一種常見的放大收益工具。然而,槓桿同時也會放大風險,如何在獲取高收益的同時有效控制風險是投資者面臨的主要挑戰之一。本研究旨在探討一種動態調控槓桿策略,該策略基於最大下跌 (Maximum Drawdown, MDD) 的控制來動態調整投資部位,從而在控制風險的同時獲取可觀的收益。
摘要 本文旨在探討主力買賣超張數指標與台灣股市價格表現之間的相關性,並評估該指標在市場趨勢預測和風險管理中的有效性。透過對台灣主要股票的交...
近期台股回落調整,外資持續賣出台股。究竟外資是何方神聖,為什麼能夠控制整個市場?交易所每天盤後都會公佈外資買賣超數量,為什麼那麼多人在關注?又要怎麼解讀?本篇就帶大家來了解外資信息,善用外資買賣超提前避開股市大幅回落!
對於早期的股市投資者而言,技術分析與業界消息一度是決策的主要依據。然而對散戶來說,這些方法的效果往往不盡人意。
或許大家都有接觸過一些基於線圖的股票交易方法,然而實際操作時卻難以確定繪製的趨勢線應該放在何處。以一名理工人的角度來看,這些方法會顯得不夠精確且令自己困惑。
大約在 2015 年左右,我第一次接觸到 F-Score。那時我閱讀了一本名為「麥克風的股市求生手冊」的投資書籍,這本書由一位在 PTT 社群中的名人麥克風所撰寫。當時他的投資策略偏向價值投資。他主張投資低估的價值股,但同時要分散風險,持有多檔股票,儘管每一檔股票可能有盈虧,整體而言能夠跑贏市場。F-Score 在書中作為一種評估股票的方式,終於有一個可以量化比較的評估方法對我來說是一則重要的好消息。