
機器學習 Python 做比特幣交易,如何找到好的特徵?增進模型的有效工具
這篇文章用機器學習實作能獲利的 BTCUSDT 交易模型,使用 Tunta 優化特徵,獲得更好的交易預測能力,會有機器學習範例講解。現在的...
這篇文章用機器學習實作能獲利的 BTCUSDT 交易模型,使用 Tunta 優化特徵,獲得更好的交易預測能力,會有機器學習範例講解。現在的...
營業利益率選股 原理 營收 (Revenue) 是一間公司「做多少生意」的指標,然而做多少生意不表示賺多少錢,營收再高也不代表賺更多的錢,...
AI選股策略介紹 機器學習是現今人工智慧(AI)浪潮下的代表性技術,將機器學習演算法應用至股市交易是本次研究著重的重點,目的是探討在台灣股...
你是不是覺得比特幣、股票都漲好高,快要懼高症發作?最近是不是手很癢,很想要趕快買股票開始投資?還是說你已經大賺一波了,想要找一個時機做賣出呢?這個實驗就是專門為你設計的!這篇文章將介紹如何將巴菲特的經典名言「眾人恐懼我貪婪」製作成數學工具應用在股市、加密貨幣、全球指數上!
機器學習究竟能不能輔助人類買賣股票?答案一定是可以的,我們可以藉由機器學習歸納出結果,來優化我們的選股方式,今天這篇文章沒有非常高深的數學,也沒有困難的程式,只會有做完研究的心得,幫助大家選股更順利!
這一篇文章中,我們要針對以往的labeling方式進行優化,讓訓練出來的模型,可以有更準確的預測。沒有參加課程的同學,也可以跟我們一起學習,下方的程式碼都是完全公開的!請大家自行拿取玩玩看喔!
文章導讀:機器學習用來投資一直都是非常熱門的學問,近年來深度學習模型開始受到非常多的矚目,尤其是在電腦視覺方面,所以接下來導讀的這篇文章,就是提供了一個全新的方式,將目前最火紅的 視覺神經網路CNN,用來預測股票的漲跌。
這篇文章是2018年剛發表的paper,算是非常新但是滿有趣的方法,針對一般的股票建構一個預測隔日價格的LSTM模型,以下就是他的方法思路。
這篇文章是印度指數預測,2015年發表的就能有191個citation,算是很有名的paper之一,全文特點是只使用了技術指標,來預測大盤每天漲跌,提出了一個有效的優化方式。
今天這篇paper是介紹總體經濟,現在全球的經濟是連動的,例如中美貿易大戰影響到全球股價,金價油價對於美國股市也有很大的影響,今天這篇paper就是要來研究不同的指數,對於NASDAQ指數的影響。
feature selection 是機器學習中非常重要的一環,尤其是財經領域的程式交易部分,因為財經領域有各式各樣的指標,又有財報、技術指標,這些指標高達尚千種,要如何選擇features,才能更有效預測股價?
現今在股市裡有三大分析方法,即:技術面、基本面、籌碼面等,而各流派似乎也都有自己能自圓其說的選股策略。這三種方法並無法直接說出孰好孰壞,分析方法的選擇跟操作者的心態、個性、紀律都有很大的關係。而我個人覺得買股票除了要買得好(投報率高)以外,賣得快(IRR高)也是很重要的,畢竟投報率會因為時間的流逝而漸漸下降。