用Python 理財 機器學習交易訊號

9/6 PyCon 韓承佑

FinLab

Trading programming language

- Easy learning curve for the beginners
- Integrated with language editor in platforms
- Can be extend by external DLL
- Most of the functions are encrypted or the source code is not provided
- Does not support statistic analysis or machine learning toolkit

Trading programming language

• Friendly statistic toolkit

- Friendly statistic toolkit
- Strong community and widely applied
- Easy to deploy (Flask/Django/...)
- More innovative data science applications

All of the papers available in the "artificial intelligence" section (arXiv)

Outline

Financial Data	Features
	Labels
Machine Learning Models	NN
	LSTM
	CNN
Evaluation	Backtesting
	Purged K-fold

ML algorithms in finance?

Supervised Machine Learning

Financial Data (Features)

Financial Data Structures

Fundamental data

Focusing on creating a portrait of a company

- Useful to combine other data types
- Difficult to confirm data release date
- Missing data is often backfilled
- Consider multiple correction

Trading data

Market participant characteristic footprint Trading book, price, broker trading summary...etc

- Data often with timestamp
- Generate extra features (ex: technical indicators)
- Massive amount of data generated in one day
- Some of the data is difficult to obtain

Creating Technical indicators

Price historical data

Fundamental Indicators

• Spent Output Profit Ratio

- Network value to transaction ratio
- Transfers volume to exchanges

Spent Output Profit Ratio

SOPR = 10000/5000 = 2

Spent Output Profit Ratio

Network Value to transaction ratio

Network value to transaction ratio

NVT =

Network value to transaction ratio

Network Value to transaction ratio

Network Value to transaction ratio

Challenging of Labeling the data

Fixed time horizon

A popular method in the literature

- au is a constant
- Do not have stop-loss limits

Label Generation Methods

- Triple barrier [Prado 2018]
- Continuous trading signals [Dash 2016]
- Trading Point decision [Chang 2009]

[Prado 2018] Advances in Financial Machine Learning [Tsantekidis 2017] Using Deep Learning to Detect Price Change Indications in Financial Markets [Dash 2016] A hybrid stock trading framework integrating technical analysis with machine learning techniques [Chang 2009] Integrating a Piecewise Linear Representation Method and a Neural Network Model for Stock Trading Points Prediction

Triple barriers [Prado 2018]

- Horizontal barriers are defined by profit-taking and stop-loss limit
- au_1 and au_2 are dynamic according to estimated volatility

Continuous trading signals [Dash 2016]

- Using momentum of the stock price
- *y*(*t*)'s are continuous
- Provides more detailed information

$$y(t) = \begin{cases} \frac{p_{t+w} - p_{t,t+w}^{\min}}{p_{t,t+w}^{\max} - p_{t,t+w}^{\min}} & \text{if } p_{t+w} > p_t \\ 0.5(1 - \frac{p_{t+w} - p_{t,t+w}^{\min}}{p_{t,t+w}^{\max} - p_{t,t+w}^{\min}}) & \text{else} \end{cases}$$

Trading point decision

- Find the local minimum and maximum points
- Divide the time series into subsegments
- Threshold value d \rightarrow length of trend

Trading point decision

- Find the local minimum and maximum points
- Divide the time series into subsegments
- Threshold value d \rightarrow length of trend

Neural Network

- Built to model the human brain
- interpret numeric data through a kind of machine perception

Human neuron structure

Single neuron model

Single node in neural network

Simplified expression

Neural Network

Deep Neural Network

Multi-layer deep neural network

Deep Neural Network

Multi-layer deep neural network

Neural Network Optimization

Cost function (error) W₁ Wh

Deep Neural Network Training Result

Asset

Taiwan Capitalization Weighted Stock Index

Data split

Train	Validate	Backtest
2006 ~ 2014	2015	2016 ~ 2019-3-1

Features

Scaled Technical Indicators

Labels

Fixed time horizon

2018-1-1

2019-7-1

Model Interpretation

- Survivor bias, lookahead bias, transection cost, outlier, overfitting
- Finding the lottery tickets that won the last game
- Solutions
 - Develop model for entire asset or classes
 - Use Bootstrap aggregating
 - Record every backtest conducted
 - Resist the temptation of reusing a failed strategy

Conclusion

Machine Learning

Financial Data	Features
	Labels
Machine Learning Models	NN
	LSTM
	CNN
Evaluation	Backtesting
	Purged Validation

