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I B Trading programming language

MetaTrader

* Easy learning curve for the beginners
* Integrated with language editor in platforms
* Can be extend by external DLL

* Most of the functions are encrypted or the source code is not provided
* Does not support statistic analysis or machine learning toolkit



I B Trading programming language

c
F

* Friendly statistic toolkit

Friendly statistic toolkit

Strong community and widely applied
Easy to deploy (Flask/Django/...)

More innovative data science applications



I B Artificial Intelligence papers
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Features

I B Outline

Financial Data

Labels

NN

Machine Learning

LSTM
Models :

CNN

Backtesting

Evaluation

Purged K-fold



I B ML algorithms in finance?




I B Supervised Machine Learning

features labels

Color Weight Category

- 3.2 kg cat

4.2 kg cat
6.2 kg

Training

features

Prediction
cat
dog
dog




Financial Data (Features)



I B Financial Data Structures

Fundamental data
Focusing on creating a portrait of a company

e Useful to combine other data types

e Difficult to confirm data release date
* Missing data is often backfilled
 Consider multiple correction

Trading data

Market participant characteristic footprint
Trading book, price, broker trading summary...etc

Data often with timestamp

Generate extra features (ex: technical indicators)
Massive amount of data generated in one day
Some of the data is difficult to obtain



I B Creating Technical indicators

Price historical data

Price - S=—T 0\ - -——
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I B Fundamental Indicators

* Spent Output Profit Ratio
* Network value to transaction ratio
* Transfers volume to exchanges



I B Spent Output Profit Ratio

Buy 1 BTC Spend 1 BTC
(5000 USD) (10000 USD)

SOPR =10000/5000 = 2



Spent Output Profit Ratio
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I B Network Value to transaction ratio
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I B Network value to transaction ratio
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I B Network Value to transaction ratio
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..Labeling



I B Challenging of Labeling the data

Fixed time horizon
A popular method in the literature

price

* 7 isaconstant
* Do not have stop-loss limits




I B Label Generation Methods

* Triple barrier [Prado 2018]
e Continuous trading signals [Dash 2016]

* Trading Point decision [Chang 2009]

[Prado 2018] Advances in Financial Machine Learning

[Tsantekidis 2017] Using Deep Learning to Detect Price Change Indications in Financial Markets

[Dash 2016] A hybrid stock trading framework integrating technical analysis with machine learning techniques

[Chang 2009] Integrating a Piecewise Linear Representation Method and a Neural Network Model for Stock Trading Points Prediction



riple barriers [Prado 2018]

* Horizontal barriers are defined by profit-taking and stop-loss limit
* 7, and 7, are dynamic according to estimated volatility

price
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I B Continuous trading signals [Dash 2016]

* Using momentum of the stock price
* y(t)’s are continuous

* Provides more detailed information

price
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rading point decision

* Find the local minimum and maximum points

* Divide the time series into subsegments

* Threshold value d = length of trend




rading point decision

* Find the local minimum and maximum points
* Divide the time series into subsegments

* Threshold value d = length of trend
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..I\/IL Models



B Neural Network

* Built to model the human brain
* interpret numeric data through a kind of machine perception

Human neuron structure Single neuron model
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I B Neural Network

Single node in neural network
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I B Neural Network

Simplified expression

&
()
)




I B Neural Network
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I B Deep Neural Network

Multi-layer deep neural network

M@i 7
0 7 N

AP /X '&
ool

et

———————————————




I B Deep Neural Network

Multi-layer deep neural network

Real system
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I B Neural Network Optimization
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I B Deep Neural Network Training Result

Asset 5018.1.1 2019-7-1

Taiwan Capitalization
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benchmark

Weighted Stock Index

Data split

Train Validate Backtest

o backtest
2006 ~ 2014 2015 2016~ 2019-3-1

Features

Scaled Technical Indicators

Labels

Fixed time horizon




Model Interpretation



I B Backtest

 Survivor bias, lookahead bias, transection cost, outlier, overfitting
* Finding the lottery tickets that won the last game

* Solutions
e Develop model for entire asset or classes
* Use Bootstrap aggregating
* Record every backtest conducted
* Resist the temptation of reusing a failed strategy



I B Conclusion Machine Learning

Features
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